
“Code and Data for the Social Sciences: A
Practitioner’s Guide”

by Matthew Gentzkow and Jesse M. Shapiro

Jaime Arellano-Bover
Applied Micro in Stata Workshop

RoME, 2022

Motivation and Purpose

• Modern Economics empirical projects are large-scale complex enterprises
• Thousands of lines of code
• Gigabytes of data
• Many collaborators
• Duration of multiple years

• How to best manage code and data in such projects?
• These skills typically taught in Computer Science, but not in Economics programs
• Econ researchers typically learn basics of programming as they go
• But intuitive self-taught approach can hit limits and lead to common problems…

Motivation and Purpose

• Goal of this handbook:

• Translate insights from experts in code and data into practical terms
for empirical social scientists

List of topics (more in the handbook)

1. Automation
2. Version Control
3. Directories
4. Keys

AUTOMATION

Example research project

• Effect of introduction of TV in the US on sale of potato chips

• Raw data: Excel file with two worksheets
1. “tv”: for each county in the US, year of TV introduction
2. “chips”: sales of chips by county by year 1940-1970

• Goal: Estimate panel regression
• log chip sales on a dummy variable for TV being available with county and

year fixed effects

Possible way to proceed

1. Open file in Excel, “Save as” to save worksheets as text files
2. Open Stata and, using command line, write necessary commands to

load, reshape, and merge text files
3. From command line, run the regression and copy regression output
4. Paste regression output into a Word file
5. Write discussion of the results, save document. Submit to journal

• Is this a good idea?

“Interactive” mode of research is bad

• We all learn that data building and statistical analysis should be stored in
scripts (i.e., .do files in Stata, .m files in Matlab, .r files in R…)
• Why?

1. Replicability
• If a year from now we want to reproduce our regression, we need a record of the

precise steps that were taken, both in data building and in estimation.

2. Efficiency
• If we need to implement a change in the analysis, repeating all steps each time is

time-consuming.

Project directory after writing .do files

• Better than interactive mode, but how long would it take you to reverse-engineer
how to replicate the findings in tv_potato_submission.pdf ?

• (Even if you are the only author, it’s surprising how little one can remember of what you at t-
6 months knew)

Write a master file!

• A master file works like a
roadmap
• It details the order in which to

run the whole project directory
• Best: automate everything,

across different software, so that
master file can be run from
computer command line
• Second best: automate all Stata

analysis (what we’ll do)

VERSION CONTROL

Our project folder after working on it a while

• There are good reasons to store multiple versions of the same file
• Discard changes, compare different ways of estimating something or defining variables

• But the method of using dates is bad!
• Ambiguity on when to have a new version, unclear which file enters the project’s workflow,

or how

• Version control software tracks successive versions of a given piece of
code:

1. Set up a repository (a folder) on your computer or the cloud
2. Each time you want to modify a script, you “check it out” of the repository
3. After you are done changing it, you check it back in

• One file, no need to change names, no need to add dates
• Software remembers every version that was ever checked in
• You can always check the history of changes and go back to an old

version

Solution: Use Version Control

• Many options for to implement version control (and newer ones since
when document was written in 2014)

• I use a combination of a GitHub account and the software Sourcetree
(we’ll see it during the workshop)

• Version control is not only useful for code and data, but also for drafts of
paper! (a paper in LaTeX is a bunch of code after all)
• Avoid the shameful file:
thesis_final_final_edits_reallyfinal.tex

Version Control

DIRECTORIES

• Instead of having a single directory, better to separate into two high-
level directories:

1. /build: contains code to build a usable Stata file from the raw
inputs

2. /analysis: code to take the Stata file and turn it into figures and
tables for the paper

Separate directories by function

• Within each directory, there is
a consistent structure:
• inputs
• outputs
• code
• temporary or intermediate

files

• Benefits
• separate pipelines ensures

dataset consistency
• more efficient to work

on/debug one part of the
project without touching the
other

KEYS

New table with county population as control
for potato chip consumption

• A mess…
• NY state population missing in

third row
• state missing in fourth row
• VA region should be constant but

is not

• These data are unusable, we
cannot understand what they
represent or how they were
constructed

Unique keys and relational databases

• A county table and a state table
• Each table has a key:

• i.e., variable(s) that uniquely identifies an
element (row)

• variables that form the key are never
missing and are never duplicated

• Each variable in a table is an attribute
of the table’s elements
• e.g., state population is a property of a

state, so it cannot live in the county table

• Data stored in this form is considered normalized
• It’s good practice to keep data normalized as long as possible through

your project’s workflow

• At the minimum, when manipulating a dataset you should always
check you know what its unique identifier is
• In Stata this is easy to check with the command isid

Unique keys and relational databases

• Well-written and entertaining
• It provides more useful information and examples than what I

summarized here
• More on coding best practices and project management that will

make your life easier
• You can find it on workshop website

The End. Read the full document!

